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AES hardware architectures
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Practical applications

 Block-chaining modes

 CBC, CMAC, and CCM…

 Both encryption and decryption operations

 Issue on block-wise pipelining

 State-of-the-art AES hardware achieves 53Gbps, but

works only on ECB or CTR mode [Mathew+ JSSC2011]

 Higher throughput ≠ Lower-latency
6
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This work

Most area-time efficient AES HW architecture

 Achieve lowest-latency with tower-field inversion

• Can perform CBC mode most efficiently

 Support both encryption and decryption

 Unified on-the-fly key scheduling datapath

 Results

 Logic synthesis with three standard CMOS technologies

• 44-72% higher throughput/gate than conventional ones

 Power estimation using gate-level dynamic simulation

• Lowest-energy than ever before
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Conventional architecture 1/2 [Lutz+, CHES 2002]

 Enc and Dec datapaths with additional selectors

 Overhead of selectors for unification is nontrivial

 False paths appear

9www.chesworkshop.org/ches2002/presentations/Lutz.pdf



Conventional architecture 2/2 [Satoh+, AC 2001]

 Unify each pair of operation and its inverse

 RoundKey requires InvMixColumns

 Some MUXs in unified operations

 Long critical path
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Tower-field implementation

 Inversion should be performed over tower-field

 Tower-field inversion is more efficient than direct 

mapping (e.g., table-lookup)

 Two types of tower-field implementation

 Type-I: only inversion is performed over tower-field

 Type-II: all operations are performed over tower-field
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Overall architecture

 Round-based architecture

On-the-fly key scheduler
13
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Round function part

 Compress encryption and decryption datapaths by 

register-retiming and operation-reordering

 Unify inversion circuits in encryption and decryption

• Without any additional selectors (i.e., overheads)

 Merge linear operations to reduce gates and critical delay

• Affine/InvAffine and MixColumns/InvMixColumns

• At most one linear operation for a round

 Type-II tower-field implementation

 Isomorphic mappings are performed at data I/O

 Lower-area tower-field (Inv)Affine and (Inv)MixColumns
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Resister-retiming and operation-reordering
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Key tricks (of decryption)
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Key tricks (of decryption)
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 Decompose InvSubByte to InvAffine and Inversion

 Register-retiming to initially perform inversion in 

round operations
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Key tricks (of decryption)
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 Merge linear operations as Unified affine-1

 InvAffine and InvMixColumns

 Distinct AddRoundKey to avoid additional selectors or 

InvMixColumns

AddRoundKey
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Resulting datapath
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Inversion circuits

Most area-time efficient inversion circuit [CHES 2015]
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Area

[GE]

Timing

[ns]

Power 

[uW]

AT 

product

PT 

product

Table look-up 1,209.50 0.66 86.9 798.27 57.35

Satoh+,

AC 2001
212.25 2.53 35.0 536.99 88.55

Canright,

CHES 2005
175.97 2.49 35.6 438.17 88.64

Nekado+,

IWSEC 2012
205.81 1.62 33.1 333.41 53.62

Ueno+, 

CHES 2015
170.00 1.42 19.3 243.10 27.60

Technology: TSMC 65-nm standard CMOS

Power estimation by gate-level timing simulation at 10MHz



Overall architecture

 Round-based architecture

On-the-fly key scheduler
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Key scheduling part

 Round key generator is dominant

 Unify encryption and decryption datapaths

 Shorten critical delay than round function part by   

NOT unifying some XOR gates
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Performance evaluation
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Area (GE) Latency 

(ns)

Max. freq. 

(MHz)

Throughput 

(Gbps)

Efficiency

(Kbps/GE)

Satoh et al. 13,671.75 78.10 140.85 1.64 119.88

Lutz et al. 20,380.50 68.50 145.99 1.87 91.69

Liu et al. 12,538.75 85.25 129.03 1.50 119.75

Mathew et al. 20,639.50 97.68 112.61 1.31 63.49

This work 15,242.75 46.97 234.19 2.73 178.78

All architectures were implemented in round-based manner

 Logic synthesis with area optimizations

 Logic synthesis: Design Compiler

 Include on-the-fly key scheduler
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Performance evaluation

 Logic synthesis with area optimizations

 Logic synthesis: Design Compiler

 Include on-the-fly key scheduler

Our architecture achieved highest efficiency
25

+53%All architectures were implemented in round-based manner



Power consumption estimation

 Power estimation by Power Compiler

 Gate-level dynamic simulation calculating switching 

activities with glitch effects

Our architecture achieved lowest power and 

power-time (PT) product
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Power [mW] @ 10 MHz PT product

Satoh et al. 4.05 316.31

Lutz et al. 3.43 234.96

Liu et al. 4.51 384.48

Mathew et al. 5.49 536.26

This work 2.76 129.63
-45%-20%



Concluding remarks

Most area-time efficient AES HW architecture

 44-72% higher throughput/gate efficiency compared to 

conventional ones

 Lowest-energy by Power Compiler with gate-level timing 

simulation

 Future works

 Post-synthesis evaluation

 Efficient side-channel-resistant architecture
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